牛顿第二定律习题(牛顿第二定律相关题型及讲解)

高中物理

牛顿第二定律的考察方式主要分为这样的5个,今天为大家仔细地将五大考点分类汇总,并为大家找到相应的经典习题。请大家好好地做哦!

预计阅读时间:27分钟

1

力与运动关系的定性分析

【例1】如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是

A.小球刚接触弹簧瞬间速度最大

B.从小球接触弹簧起加速度变为竖直向上

C.从小球接触弹簧到到达最低点,小球的速度先增大后减小

D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。

【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则

A.物体从AO先加速后减速

B.物体从AO加速运动,从OB减速运动

C.物体运动到O点时所受合力为零

D.物体从AO的过程加速度逐渐减小

解析:物体从AO的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.

当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.

此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.

正确选项为A、C.

点评:

(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.

(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.

2

牛顿第二定律的瞬时性

【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θL2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。

(1)下面是某同学对该题的某种解法:

解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。

mg,

,解得

=mgtanθ,剪断线的瞬间,T2突然消失,物体却在T2反方向获得加速度,因为mgtanθ=ma所以加速度a=gtanθ,方向在T2反方向。你认为这个结果正确吗?说明理由。

(2)若将图(1)中的细线L1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由。

解析:(1)这个结果是错误的。当L2被剪断的瞬间,因T2突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L1斜向下方,为a=gsinθ。

(2)这个结果是正确的。当L2被剪断时,T2突然消失,而弹簧还来不及形变(变化要有一个过程,不能突变),因而弹簧的弹力T1不变,它与重力的合力与T2是一对平衡力,等值反向,所以L2剪断时的瞬时加速度为a=gtanθ,方向在T2的反方向上。

点评:牛顿第二定律F合=ma反映了物体的加速度a跟它所受合外力的瞬时对应关系.物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失.

3

正交分解法

【例4】如图所示,质量为4kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10m/s2)

解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F沿两坐标轴方向分解,则两坐标轴上的合力分别为

物体沿水平方向加速运动,设加速度为a,则x轴方向上的加速度axay轴方向上物体没有运动,故ay=0,由牛顿第二定律得

所以

又有滑动摩擦力

以上三式代入数据可解得物体的加速度a=0.58m/s2

点评:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.

4

合成法与分解法

【例5】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(g=10m/s2,sin37°=0.6,cos37°=0.8)

(1)求车厢运动的加速度并说明车厢的运动情况.

(2)求悬线对球的拉力.

解析:

(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg和线的拉力FT,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为

F合=mgtan37°

由牛顿第二定律F合=ma可求得球的加速度为

7.5m/s2

加速度方向水平向右.

车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.

(2)由图可得,线对球的拉力大小为

N=12.5N

点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.

【例6】如图所示,m =4kg的小球挂在小车后壁上,细线与竖直方向成37°角。求:

(1)小车以a=g向右加速;

(2)小车以a=g向右减速时,细线对小球的拉力F1和后壁对小球的压力F2各多大?

解析:

(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,因此GF1的合力一定水平向左,所以F1的大小可以用平行四边形定则求出:F1=50N,可见向右加速时F1的大小与a无关;F2可在水平方向上用牛顿第二定律列方程:F2-0.75G=ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。)

(2)必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F1的方向会改变。所以必须先求出这个临界值。当时GF1的合力刚好等于ma,所以a的临界值为

。当a=g时小球必将离开后壁。不难看出,这时F1=

mg=56N,F2=0

【例7】如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。求:(1)箱以加速度a匀加速上升,(2)箱以加速度a向左匀加速运动时,线对木块的拉力F1和斜面对箱的压力F2各多大?

解:(1)a向上时,由于箱受的合外力竖直向上,重力竖直向下,所以F1、F2的合力F必然竖直向上。可先求F,再由F1=FsinαF2=Fcosα求解,得到:F1=mg+a)sinαF2=mg+a)cosα

显然这种方法比正交分解法简单。

(2)a向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解a),然后分别沿x、y轴列方程求F1、F2:

F1=mgsinαacosα),F2=mgcosα+asinα

经比较可知,这样正交分解比按照水平、竖直方向正交分解列方程和解方程都简单。

点评:还应该注意到F1的表达式F1=mgsinαacosα)显示其有可能得负值,这意味着绳对木块的力是推力,这是不可能的。这里又有一个临界值的问题:当向左的加速度agtanαF1=mgsinαacosα)沿绳向斜上方;当a>gtanα时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。

5

在动力学问题中的综合应用

【例7】如图所示,质量m=4kg的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F作用下,从静止起向右前进t1=2.0s后撤去F,又经过t2=4.0s物体刚好停下。求:F的大小、最大速度vm、总位移s

解析:由运动学知识可知:前后两段匀变速直线运动的加速度a与时间t成反比,而第二段中μmg=ma2,加速度a2=μg=5m/s2,所以第一段中的加速度一定是a1=10m/s2。再由方程

可求得:F=54.5N

第一段的末速度和第二段的初速度相等都是最大速度,可以按第二段求得:vm=a2t2=20m/s 又由于两段的平均速度和全过程的平均速度相等,所以有

m

点评:需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。

可见,在动力学问题中应用牛顿第二定律,正确的受力分析和运动分析是解题的关键,求解加速度是解决问题的纽带,要牢牢地把握住这一解题的基本方法和基本思路。我本在下一专题将详细研究这一问题。

声明:本文来源于网络,由高中物理(gaozhongwuli100)编辑整理,如有侵权,联系删除,转载请注明出处

(0)
声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 FB8260@QQ.COM 举报,一经查实,立刻删除。